

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

1

Nios® II and I2C Master Implementation on the on the Intel®
MAX® 10-10M08 Evaluation Kit
By Sean D. Liming and John R. Malin
Annabooks, LLC. – www.annabooks.com

January 2023

The Inter-Integrated Circuit (I2C or I2C) provides chip-to-chip communication on a two-wire bus.
I2C has become very popular as more sensor chip manufacturers provide more solutions with I2C
as the interface bus. I2C is much simpler than the 4-wire SPI with device addressing and a simple
clocking solution. For NIOS II, there is an I2C Master IP that can be added to a design so you can
connect various external sensor and memory I2C devices. There is a catch. The Avalon I2C Master
IP has 4 signals on the output. SDA In, SDA OE, SCL In, and SCL OE. An open drain buffer needs
to be created to take the four signals down to the expected two: SDA and SCL. Although the Intel
Embedded Peripherals IP User Guide provides the key information, a walk-through demonstration
can help fill in the gaps. This article will demonstrate the Avalon I2C Master IP talking to a single
sensor on the bus. A TMP102 I2C Temperature Sensor from SparkFun will be used to test the
design.

Please see the article Intel® Quartus® Prime Lite and Nios® II SBT for Eclipse Installation
Instructions on Annabooks.com to install the software needed for this hands-on exercise.

The Project Requirements:

• Intel Quartus Prime Lite Edition V21.0 and Nios® II SBT for Eclipse are already installed.

• Intel® MAX® 10 - 10M08 Evaluation Kit and the schematic for the evaluation board are
required. The schematic PDF file can be downloaded from the Intel FPGA website.

• Intel FPGA Programming cable – USB Blaster II or EthernetBlaster II. The Intel® MAX®
10 - 10M08 Evaluation Kit doesn’t have a built-in USB Blaster II onboard.

• SparkFun TMP102 I2C Temperature Sensor

• Intel® Quartus® Prime Lite and NIOS® II SBT for Eclipse Installation Instructions on
Annabooks.com

Note: There are equivalent MAX 10 development and evaluation boards available. These boards
can also be used as the target, but you will have to adjust to the available features on the board.
Please make sure that you have the board’s schematic files as these will be needed to identify pins.

1.1 Nios II Timer Project

The custom MCU will comprise the following IP blocks:

• Nios II processor

• On-chip RAM

• Avalon I2C (Master)

• Interval Timer

• Sys ID

• JTAG UART

1.1.1 Create the Project
The first step is to create a design project.

1. Open Quartus.
2. Click on the New Project Wizard.

http://www.annabooks.com/
https://www.sparkfun.com/products/13314
https://www.annabooks.com/Articles/Articles_FPGA/Intel-FPGA-Tools-Setup-Rev1.1.pdf

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

2

3. Click Next to the Introduction dialog
4. Select or create a project directory \NIOS2_I2C (Do not use the Quartus installation

directory) and name of the project: “NIOS2iic”. Click Next.

Note: By default, the root directory is the Quartus installation directory. Make sure the root project
directory is a separate path from the Quartus installation files. Also, there can be no spaces in the
name of the folders or projects.

5. Project Type: Empty project, click Next
6. Add File no files to add, click Next.
7. Family, Device & Board Settings, click the Board tab and select: MAX 10 FPGA 10M08

Evaluation Kit, and click Next.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

3

8. EDA Tools: click Next.
9. Summary: click Finish.

Note: The actual MAX 10 on our board is the 10M08SAE144C8G, thus it is not an Engineering
Sample (ES). The next two steps change the device to the production device. Your experience
might be different. These next two optional steps change the device.

10. In the project navigation pane on the left, right-click on 10: 10M08SAE144C8GE, and select
Device from the context menu.

11. In the Available devices, scroll down and select the 10M08SAE144C8G. Click OK.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

4

1.1.2 Create the Design in Platform Designer
Quartus supports many design types to create an FPGA design. The Platform Designer tool will be
used for this hands-on exercise. Platform Designer makes it easy to add already-built IP blocks
and interconnected them.

1. From the menu, select Tools->Platform Designer, or the Platform Designer icon
from the toolbar.

The Platform Designer tool is launched. By default, a clock (clk_0) is added to the design. Platform
Designer makes it easy to add IP blocks and make interconnections between the blocks.

2. The top left pane contains the IP Catalog with all the available IP blocks that come with
Quartus Prime. In the search box, type NIOS.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

5

3. Expand the Processors and Peripherals and Embedded Processors branches and double-
click on the Nios II Processor.

4. This will open the Nios II Configuration page. The first tab is to select the type of core Nios
II/e or Nios II/f. We will keep the defaults for now. Click Finish.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

6

1. The processor will be added to the design. Right-click on the name nios2_gen2_cpu, and
rename it to nios2.

2. Now let’s add the RAM IP block. In the IP Catalog enter RAM in the search box.
3. Double-click on On-chip Memory (RAM or ROM) in the Intel FPGA IP.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

7

4. The configuration page will appear. Change the Total memory size to 25600. We need
more memory to run the application.

5. Uncheck the box for “Initialize memory content”, and click Finish.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

8

6. The On-chip Memory (RAM or ROM) in the Intel FPGA IP will be added to the design.
Right-click on the name, and rename it to onchip_RAM.

7. In the IP Catalog search, I2C.
8. Double-click on the Avalon I2C (Master) intel FPGA IP.

9. A configuration screen appears asking to see the FIFO. Keep the value at 4 and click
Finish.

10. The i2c_0’s isc_serial Conduit needs to have an export name. Double-click on the export
column and enter i2c0.

The name of the exported conduit is important as it will be used for the base name of the 4 signals
from the Avalon I2C (Master) IP. The 4 signal names will be used to create the buffer interface.

11. In the IP Catalog search, enter timer.
12. Double-click on the Interval Timer Intel FPGA IP.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

9

13. Keep the settings as they are and click Finish.
14. In the IP Catalog search, enter system ID.
15. Double-click on the System ID Peripheral Intel FPGA IP.

16. A configuration page will appear. There are no changes to be made. Click Finish.
17. In the IP Catalog search, enter uart.
18. Double-click on the JTAG UART Intel FPGA IP.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

10

19. A configuration page will appear. There are no changes to be made. Click Finish.
20. Now we need to wire the IP blocks together. The picture below shows all the writing

connections for the design.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

11

21. Let’s assign a base address. From the menu, select System->Assign Base Address. This
will remove a number of errors from the message box. You will see the base address values
for each IP change in the System Contents tab.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

12

22. Finally, let’s set the reset and exception vector addresses. Double-click on the nios2 to
open the configuration page.

23. Click on the Vectors tab.
24. Change the Reset vector memory drop-down to onchip_RAM.s1.
25. Change the Exception vector memory drop-down to onchip_RAM.s1.

26. Click on Generate HDL…
27. Keep the defaults and click the Generate button.
28. A dialog will appear asking you to save the design, click Save.
29. Give the name as NIOS2iicMCU.qsys, and click Save.
30. Once the save has been completed, click Close.
31. The generate process kicks off. The processes should succeed, click Close.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

13

32. Click Finish to close the design.
33. Quartus then reminds you to add the new design to the project. Click Ok.
34. In the Project Navigator click on the drop-down and select Files.
35. Right-click on Files and select Add/Remote Files in Project.

36. A Settings – NIOS2iic page appears with Files on the left highlighted. Click the three dots
browse button for File name, and navigate to \NIOS2_I2C folder.

37. Click on NIOS2iicMCU.qsys file and click open.

38. Click OK to close the Settings- NIOS2iic page. The qsys file is added to the Project
navigator list.

Now, we come to the little trick that creates the tristate buffer. We are used to seeing the SCL and
SDA in an MCU. Within the chip, there are four lines handling the bidirectional data and clock
signals. The I2C IP provides the 4 lines, and the buffer implementation is up to you. The nice thing
about Platform Designer is the sample IP available from Intel and other vendors to quickly create
a design. Behind the scenes are all the Hardware Definition Language code and files that you
typically don’t have to worry about coding yourself. It is easy to forget that HDL programming is
important, and in this case, coding is the important step.

39. From the menu, select File->Open

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

14

40. Navigate to \ NIOS2_I2C\NIOS2iicMCU and open the NIOS2iicMCU_inst.v file. The file
contains the connections for the NIOS2iicMCU design.

 NIOS2iicMCU u0 (
 .clk_clk (<connected-to-clk_clk>), // clk.clk
 .reset_reset_n (<connected-to-reset_reset_n>), // reset.reset_n
 .i2c0_sda_in (<connected-to-i2c0_sda_in>), // i2c0.sda_in
 .i2c0_scl_in (<connected-to-i2c0_scl_in>), // .scl_in
 .i2c0_sda_oe (<connected-to-i2c0_sda_oe>), // .sda_oe
 .i2c0_scl_oe (<connected-to-i2c0_scl_oe>) // .scl_oe
);

41. Keep the file open as we will use the information for a new file. From the menu, select File-
>New.

42. For file type click on Verilog HDL File and click OK.
43. Enter the following:

module NIOS2i2c (
 input clk_50Mhz,
 input SW1,
 inout i2c_0_scl, // i2c_scl_pin
 inout i2c_0_sda // i2c_sda_pin
);

wire m_sda_in;
wire m_scl_in;
wire m_sda_oe;
wire m_scl_oe;

assign i2c_0_sda = m_sda_oe ? 1'b0 : 1'bz;
assign m_sda_in = i2c_0_sda;
assign i2c_0_scl = m_scl_oe ? 1'b0 : 1'bz;
assign m_scl_in = i2c_0_scl;

NIOS2iicMCU soc_inst (
 .clk_clk (clk_50Mhz), // clk.clk
 .reset_reset_n (SW1), // reset.reset_n
 .i2c0_sda_in (m_sda_in), // i2c0.sda_in
 .i2c0_scl_in (m_scl_in), // .scl_in
 .i2c0_sda_oe (m_sda_oe), // .sda_oe
 .i2c0_scl_oe (m_scl_oe) // .scl_oe
);

endmodule

44. Save the new file as NIOS2i2c.v
45. In Project Navigator, right-click on NIOS2i2c.v and select Set as Top-Level Entity from the

context menu.
46. Save the project.

A new module is being created that builds on the NIOS2iicMCU design to create the buffer. The
top of the module section defines the external wires of the module. Using the information from the
NIOS2iicMCU_inst.v file, an instance of NIOS2IICMCU and the signals are added to the bottom

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

15

and modified with module (m_) interconnection names. These interconnection names are defined
as internal wires and then assigned to the external wire connections. The proper assignments are
called out in the Embedded Peripherals IP User Guide. The ? 1’b0 : 1’bz makes the single
i2c_0_scl and i2C_0_sda pins a tristate buffer. The words in the guide are correct, but the actual
mechanism to make this happen is not really shown. If you have PIOs in the NIOS2 design that are
going to work with other internal FPGA glue logic and want to use a block diagram for the design,
you can create a symbol based on the file. Simply right-click on the NIOS2i2c.v and select “Create
Symbol file for Current File”. You can then create a block diagram using the new NIOS2i2c.bsf.

47. In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. The
analysis will take some time, and it should succeed in the end. This step helps to diagnose
any errors and finds the Node Names for the pin assignments in the next step.

48. Once the process completes, the pin assignments need to be set, from the menu select

Assignments->Pin Planner or click on the icon from the toolbar. The analysis just
run populated the Node Name list at the bottom of the Pin Planner dialog.

49. Using the board schematic, locate the pins for the SW1 and the 50MHz clock. Set the
Location values for both node names.

50. The SCL will be connected to PIN 38 (J8-20) and SDA will be connected to PIN_39 (J8-
19).

Node Name Location

SW1 PIN_121

Clk_50MHz: PIN_27

altera_reserved_tck PIN_18

altera_reserved_tdi PIN_19

altera_reserved_tdo PIN_20

altera_reserved_tms PIN_16

i2c_0_scl PIN_38

i2c_0_sda PIN_39

51. Set the I/O Standard to 3.3V-LVTTL for all pins You can see from the schematic that the

I/O are all tied to 3.3V.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

16

52. Close the Pin Planner when finished. The diagram gets updated with the pin numbers.
53. Save the project.

Note: Quartus can crash unexpectedly, which may be due to the fact that it was written in Java and
is not a native Windows application based on .NET. Therefore, a best practice at this point is to
make a backup of the project folder. Archiving is simple. From the menu select, Project->Archive
Project.

54. Finally, compile the design. In the Task pane, right-click on Compile and Design and select

Start from the context menu, or you can click on the symbol in the toolbar. The design
should compile successfully.

1.1.3 Wire Up the TMP102 to the Max 10-10M08 Evaluation Kit.
Connect the SparkFun TMP102 to the J8 header connector as follows:

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

17

1.1.4 Eclipse Application: tempTest
The application will open the i2c port, configure the port to communicate with the TMP102, and
then read the temperature from the sensor.

1. In Quartus Prime, from the menu, select Tools->Nios II Software Build Tools for Eclipse.
2. Eclipse will open and ask for the root workspace directory. Set the workspace folder to

something like \Documents\FPGA\Apps, and hit ok. It doesn’t matter the location of the
workspace, since the actual applications for the project will exist within the
\NIOS2_i2c\software folder.

3. In Eclipse, from the menu, select File->New-> Nios II Application and BSP from Template.

4. The first step is to open the SOPC file that was generated for the hardware design. Click
on the three dots button.

5. Navigate to the \NIOS2_I2C folder and open the NIOS2iicMCU.sopcinfo file. The CPU
name will reflect the name we gave the CPU in Platform Designer.

6. Enter the project name: tempTest.
7. In the Project Template, select Blank Project
8. Click Finish.

GND

VCC

SDA

SCL

ALERT

ADD0

TMP102

1
J8-20

1
J8-19

J8-40

3.3V J8-34

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

18

Two projects will be generated. The tempTest _bsp is generated to give you the HAL drivers and
API based on the hardware design. The tempTest is the application that will run on the hardware.

9. We need to edit the BSP to use the small C library and drivers. The BSP Editor tool allows
you to edit the settings.bsp file to make specific changes for the target. Right-click on
timerTest_bsp and select Nios II->BSP Editor from the context menu.

10. The BSP Editor opens and opens the settings.bsp file automatically. If you started the BSP
Editor from the main menu you would have to manually navigate to open the file. In the
BSP Editor, tick the box for enable_small_c_library and enable_reduced_device_drivers.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

19

11. Click Generate to generate the changes.
12. Click Exit when finished.

The tempTest_bsp contains the key files that will help with filling in the code to access the timers
and pio port. System.h contains the definitions that can be used for how the i2c was set up in
Platform Designer. The header files for the altera_avalon_i2c_reegs.h and altera_avalon_i2c.h
contain the API needed for the application.

13. We need to add a main.c file to the project. Right-click on the tempTest project, and select
New->File from the context menu.

14. Enter the file name main.c and click Finish.
15. Add the following code to the main.c file.

1. #include <stdio.h>

2. #include "system.h"

3. #include "altera_avalon_i2c_regs.h"

4. #include "altera_avalon_i2c.h"

5.

6. //Address of TMP102 and the Temp Register

7. const alt_u32 TEMP_TMP102_ADDR = 0x48;

8. const alt_u8 TempRegisterAddr = 0x00;

9.

10. //TMP102 other calls not used in the example

11. const alt_u8 ConfigRegisterAddr = 0x01;

12. const alt_u8 TlowRegisterAddr = 0x02;

13. const alt_u8 ThighRegisterAddr = 0x03;

14.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

20

15. int main(){

16.

17. alt_u8 ReadTempbuf[2];

18. alt_u8 TxBuffer[1]= { TempRegisterAddr };

19. alt_u16 TempLSB;

20. alt_u16 TempMSB;

21. alt_u16 TempFinal;

22. float tempC;

23. char finaloutput[5];

24. ALT_AVALON_I2C_STATUS_CODE status;

25.

26.

27. ALT_AVALON_I2C_DEV_t *my_i2c;

28. ALT_AVALON_I2C_MASTER_CONFIG_t cfg;

29.

30. cfg. addr_mode = 0;

31.

32. my_i2c = alt_avalon_i2c_open(I2C_0_NAME);

33. if(my_i2c == NULL){

34. printf("Failed to open I2C port \ n");

35. return 1;

36. }

37. alt_avalon_i2c_master_target_set(my_i2c, TEMP_TMP102_ADDR

); //pointing to the TMP102 address

38. alt_avalon_i2c_master_config_speed_set(my_i2c, &cfg,

400000); //Set the speed

39. alt_avalon_i2c_master_config_set(my_i2c, &cfg);

//configure

40.

41. status = alt_avalon_i2c_master_tx_rx(my_i2c, TxBuffer, 1,

ReadTempbuf, sizeof(ReadTempbuf),ALT_AVALON_I2C_NO_INTERRUPTS);

42. if (status!=ALT_AVALON_I2C_SUCCESS){

43. printf("Read Failure \ n");

44. return 1; //FAIL

45. }

46.

47. TempMSB = ReadTempbuf[0];

48. TempMSB = TempMSB << 4;

49. TempLSB = ReadTempbuf[1];

50. TempLSB = TempLSB >> 4;

51. TempFinal = TempMSB + TempLSB;

52.

53. tempC = (float)TempFinal *0.0625;

54.

55. sprintf(finaloutput, "%.1f" , tempC);

56. printf(" Temp is %s" ,finaloutput);

57.

58.

59. return 0;

60. }

The basic concept for programming on top of the provided HAL drivers is the HAL API Wrappers.
The various driver header files contain the wrapper APIs that are used to access the i2c port.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

21

Nios II HAL Drivers

Nios II HAL API Wrappers

Application

The TMP102 has an address of 0x48 and simple registers to access. The temperature sensor
register address is 0x00 so this is what is passed as a message during the write-read call. Lines
27-39 set up the I2C port by creating an instance of the device and mater config settings. The port
is opened using the name found in system.h. The save address, speed, and address scheme are
configured.

Line 41 performs the write-read that sends the 0x00 to get the data back from the temperature
register. Two bytes will be returned. Lines 47-56, take the two bytes and perform the operations to
convert the date into an actual temperature in degrees Celsius. Since we have to use the small-C
library because of the small memory available, the actual value is never sent to standard output.
We can see the result in the debugger.

16. Save the file.
17. Right-click on tempTest project again, and select Build Project. The build should complete

successfully, and the tempTest.elf file has been created.
18. Close Eclipse

Now, we are ready to program the board with the design and debug the application.

1.1.5 Program the Board
With the design compiled, application ready, and circuit connect, we can now test the design on
the board.

1. Connect the board with the programming cable per the cable instructions.

Note: The MAX 10 – 10M08 Evaluation Kit doesn’t come with a programming cable or built-in JTAG
USB Blaster II. You will have to use either the USB Blaster II or EthernetBlaster II external cables.
The EthernetBlaster II was used for this example. DHCP setup was not working so a direct Ethernet
cable connection was made between a PC and the EthernetBlaster II. The static IP was set for the
PC network card to 198.162.0.1. The EthernetBlaster II was accessed via a browser and then the
IP address was changed to a static IP that matched the network. The new IP address was used as
the Server name.

2. Power on the board and the programming cable box.
3. In Quartus Prime, from the Task pane, right-click on Program Device (Open Programmer)

and select Open from the context menu or click on the icon on the toolbar.
4. The Programmer dialog appears, click on the “Hardware Setup” button.
5. Click the Add hardware button, select the Hardware type and fill in any remaining

information, and click OK.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

22

6. The tool allows you to connect to a number of programming cables. We need to select the
one for our board. In the “Currently selected hardware”, click the drop-down and select the
hardware cable for the board, and click Close when finished

7. A NIOS2iic_time_limited.sof file gets created during the Compile Design flow. The file is
automatically filled in. There is only one FPGA on the board and in the JTAG chain so the
file already has the Program/Configure checkbox checked. Click the Start button to
program the board. The process takes a few seconds and shows that the task was
completed successfully.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

23

Note: The reason for the “time_limited” in the name of the .sof file is that we chose a Nios II/f, which
requires a license. The design must be connected to the JTAG cable or the system will shut off
after an hour.

A dialog will appear that the design is time limited to one hour. The design can always be reloaded
when the timeout occurs.

Important: This dialog acts as a tether to the time-limited IP. You must leave this dialog running
while you are running the applications.

1.1.6 Deploy the Application and Other Tests
With the design loaded and the connection to JTAG up and running, we can test the application.

1. From the Quartus menu, select Tools-> Nios II Software Build Tools for Eclipse.
2. Open the main.c application.
3. Set a breakpoint at line 41.
4. Right-click on tempTest and select Debug As->Nios II Hardware. The program will load

and start running.
5. Step through the code and view the Variables tab to see the final temperature value.

Rev 1.2

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

24

6. When finished stop debugging, close Eclipse, and close the OpenCore Plus dialog.

1.2 Summary: Mystery of the I2C Buffer

We found various online postings asking how to implement the buffer. As the initial replies were
basically thrown over the fence, some asked for a walk-through. We hope this solves the mystery.
Although, the example was in Verilog, the same solution can be performed in VHDL.

Note: A similar TMP102 I2C Windows .NET 6 application running on the UP Board produced the
same temperature results. Two different systems accessing the same I2C device and able to read
the data. When we use an Oscilloscope to look at the signals. The signals are captured on the
Windows + UP Board, but not on the MAX 10 FPGA. Please share if you know why.

1.3 References

The following references were used for this article:

• Nios® II Processor: Hardware Abstraction Layer Exercise Manual, Intel Corporation

• Nios® II Software Developer Handbook, V21.3, Intel Corporation, 10/4/21

• Embedded Peripherals IP User Guide, Intel Corporation, Version 2021.12.13

The following are the web reference used to help with the project:

• MAX10, Nios 2: Intel FPGA Avalon I2C (Master) example ? - Intel Communities

• I2C master with NIOS 2 - Intel Communities

• alt_avalon_i2c_master_tx will always fail with -1 error code - Intel Communities

• Nios® II I2C Slave Utilization Address Stealing - Semiconductor Business - Macnica

https://community.intel.com/t5/Programmable-Devices/MAX10-Nios-2-Intel-FPGA-Avalon-I2C-Master-example/m-p/1365236
https://community.intel.com/t5/Nios-II-Embedded-Design-Suite/I2C-master-with-NIOS-2/td-p/1245961
https://community.intel.com/t5/Nios-II-Embedded-Design-Suite/alt-avalon-i2c-master-tx-will-always-fail-with-1-error-code/m-p/698035
https://www.macnica.co.jp/business/semiconductor/articles/intel/129485/

